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Abstract

Systemic lupus erythematosus (SLE) is a clinically heterogeneous disease affecting multiple organ 

systems and characterized by autoantibody formation to nuclear components. Although genetic 

variation within the major histocompatibility complex (MHC) is associated with SLE, its role in 

the development of clinical manifestations and autoantibody production is not well defined. We 

conducted a meta-analysis of four independent European SLE case collections for associations 

between SLE sub-phenotypes and MHC single-nucleotide polymorphism genotypes, human 

leukocyte antigen (HLA) alleles and variant HLA amino acids. Of the 11 American College of 

Rheumatology criteria and 7 autoantibody sub-phenotypes examined, anti-Ro/SSA and anti-

La/SSB antibody subsets exhibited the highest number and most statistically significant 

associations. HLA-DRB1*03:01 was significantly associated with both sub-phenotypes. We found 

evidence of associations independent of MHC class II variants in the anti-Ro subset alone. 

Conditional analyses showed that anti-Ro and anti-La subsets are independently associated with 

HLA-DRB1*0301, and that the HLA-DRB1*03:01 association with SLE is largely but not 

completely driven by the association of this allele with these sub-phenotypes. Our results provide 

strong evidence for a multilevel risk model for HLA-DRB1*03:01 in SLE, where the association 

with anti-Ro and anti-La antibody-positive SLE is much stronger than SLE without these 

autoantibodies.
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INTRODUCTION

Systemic lupus erythematosus (SLE; OMIM 152700) is a complex autoimmune disease that 

can affect multiple organ systems. Processes involving both the innate and adaptive immune 

systems contribute to its development.1 The disease is clinically heterogeneous, and affected 

individuals only need 4 out of 11 of the American College of Rheumatology (ACR) criteria 

to be classified as having SLE. Although patients may differ in their clinical manifestations, 

patients do share a propensity to develop autoantibodies directed against nucleic acids and 

associated nuclear and cellular proteins.

There is overwhelming evidence of a genetic component to SLE risk with higher 

concordance rates observed between monozygotic twins (20–40%) compared with dizygotic 

twins (2–5%).2 The familial aggregation for SLE (sibling risk ratio, λs = 8–29)2,3 is higher 

than other autoimmune diseases, and the estimate of heritability is approximately 66%.4 
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Genetic association studies of SLE have been successful in identifying multiple loci.5–11 

However, relatively few studies have investigated the genetic association with specific SLE 

sub-phenotypes.12–15 These studies focused mainly on major histocompatibility complex 

(MHC) class II genes, and found evidence that class II alleles such as HLA-DRB1*03:01 are 

associated with auto-antibody production.13 Our study substantially expands this work by 

not only analysing imputed classical human leukocyte antigen (HLA) alleles, but also 

examining variant HLA amino-acid positions in conjunction with single-nucleotide 

polymorphism (SNP) genotypes across the extended MHC region (chromosome 6: 26–34 

Mb). Our aim was to discover genetic loci within the MHC region that are associated with 

specific clinical and/or immunological manifestations within SLE cases and hence to find 

evidence of genetic variants that may drive specific forms of the disease. For complex 

heterogeneous diseases such as SLE, comprehensive sub-phenotype studies are critical in 

order to understand how previously identified genetic associations contribute to disease 

pathogenesis and specific disease manifestations.

RESULTS

Study sample

For this study, we collected genetic and sub-phenotype data from 3070 SLE cases of 

European descent characterized in four genetic association studies of SLE. These SLE cases 

were previously examined in a large meta-analysis that examined the association between 

MHC genetic variation and SLE susceptibility.16 Table 1 describes the genotyping platform, 

number of genotyped MHC SNPs, and sample size of each case collection in the study. 

Given the strong genetic associations observed with anti-Ro/SSA and anti-La/SSB 

autoantibody production described below, Table 1 also provides the frequency of these 

antibodies for each case collection. Genetic (SNP) imputation was performed previously16 

for each case collection, resulting in a total of 7119 SNPs common between the four 

collections. In addition, classical HLA class I and II alleles as well as their corresponding 

variant amino acids (AAs, see Materials and Methods) were imputed and analysed.

Selection of sub-phenotypes for analysis

We examined the 11 ACR classification criteria17 and 7 SLE-related autoantibodies (anti-

double-stranded DNA, anti-Sm, anti-RNP, anti-Ro/SSA, anti-La/SSB, anti-cardiolipin IgG 

and anti-cardiolipin IgM) as candidate sub-phenotypes for this study. Single-marker 

associations for each candidate sub-phenotype with all variants were assessed using logistic 

regression adjusted for population substructure and case collection (Supplementary Table 1). 

We analysed 7656 variants in total (7119 SNPs, 199 HLA alleles and 338 HLA amino-acid 

positions (see methods)). The specific sub-phenotypes comprising anti-Ro and anti-La 

antibodies demonstrated by far the most associations: 1635 and 1828 variants, respectively, 

at P<0.00001. For all other sub-phenotypes, there were fewer than 30 variants that were 

significant at this level. Thus, we targeted anti-Ro and anti-La antibody subsets for detailed 

investigation as they have the strongest evidence for a genetic aetiology.
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Anti-Ro antibody sub-phenotype

Stepwise conditional analysis—The most associated marker (in terms of P-value as a 

single marker) was the class III SNP rs3129962 in BTNL2 (P =9.47 × 10 −27; odds ratio 

(OR) = 2.44, 95% confidence interval (CI) =2.08–2.94; Table 2A). This marker is in linkage 

disequilibrium (LD) with HLA-DRB1*03:01 (R2 =0.84, D′ =0.99). When conditioning on 

this SNP as a covariate in forward stepwise regression, the next most associated marker was 

the class II SNP, rs9271731, between HLA-DRB1 and HLA-DQA1 (P = 9.56 × 10 −07; OR = 

1.54, 95% CI =1.30–1.85). This SNP is in LD with HLA-DRB1*15:01 (R2 =0.72, D′ = 1). 

When using rs9271731 as an additional covariate, one further association signal was 

detected at the class II SNP, rs3957146, between HLA-DQB1 and HLA-DQA2 (P =5.70 × 

10 −06; OR =0.52, 95% CI =0.39–0.69). Of note, the effect sizes (ORs) and P-values that we 

present here are estimated from the multivariate models returned by stepwise regression 

(columns 2–3 in Table 2). The association results for a given variant from single marker 

analyses can be seen in the last two columns of Table 2.

The most associated amino acid (AA) was at position 77 in HLA-DRB1 with the common 

AA threonine having a protective effect (P =2.72 × 10−13; OR =0.49; 95% CI =0.41–0.60). 

HLA-DRB1*03:01 and HLA-DRB1*03:02 encode the single alternative AA, asparagine, (R2 

=1). HLA-DRB1*03:02 is not significantly associated with this sub-phenotype (P =0.37) 

possibly because of this allele being rare (frequency of 0.01% in our data). We cannot be 

certain that this lack of association applies to the general population and this needs to be 

investigated to address this uncertainty. All other HLA-DRB1 alleles code for threonine. The 

single marker P-value for this AA was very close to that of the most strongly associated 

SNP (see last column in Table 2). Therefore, we ran a stepwise regression starting from this 

marker. When conditioning on this AA, the next most associated marker was the class II 

SNP, rs9271731, between HLA-DRB1 and HLA-DQA1 (P =4.5 × 10−08; OR = 1.63, 95% CI 

=1.37–1.95). When using rs9271731 as an additional covariate, one further association 

signal was detected at the class III SNP, rs3130781, in DPCR1 (P =1.76 × 10−05; OR =1.44, 

95% CI =1.22–1.71). The SNP rs3130781 is in LD with HLA-DRB1*03:01 (R2 = 0.29, D′ 

=0.64) and HLA-B*08:01 (R2 =0.29, D′ =0.72). One final association signal was detected at 

HLA-DQB1*03:02 (P =2.49 × 10−05; OR =0.56, 95% CI = 0.42–0.73). The results from this 

analysis can be seen in Table 2B.

Owing to the correlation between the most associated SNPs with known associated HLA-

DRB1 alleles (rs3129962 tags HLA-DRB1*03:01/Thr77 in DRB1 (R2 =0.84); rs9271731 

tags HLA-DRB1*15:01), we performed stepwise regression conditioning on these HLA 

alleles as covariates. When conditioning on HLA-DRB1*03:01 and HLA-DRB1*15:01, the 

next most associated marker (rs9275582) was in class II between HLA-DQB1-HLA-DQA2 

(P =2.99 × 10−06; OR =0.61; 95% CI =0.5–0.76). The most significant HLA allele was 

HLA-DQB1*03:02, which is in LD with rs9275582 (R2 =0.29, D′ =0.80). These two sets of 

results can be seen in Tables 2C and 2D. We note that HLA-DQB1*03:02 is in LD (R2 = 

0.58) with rs3957146 (the third associated SNP in the first stepwise regression presented in 

Table 2).
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A simple stepwise regression analysis including only AA variants indicated associations 

with Thr77, Leu67 and Gln96 in HLA-DRB1 (Table 2E). The HLA-DRB1 AA glutamine at 

position 96 is in LD with HLA-DRB1*15:01 (R2 =0.82, D′ =1.00).

Model choice using the bayesian information criterion (BIC)—Owing to the 

extended LD, an analysis of the MHC using stepwise regression to find evidence for 

multiple independently associated variants can lead to many models depending on the first 

marker conditioned on (used as a covariate for further association analysis). This was 

discussed previously16 and here we also used the BIC as an aid to model choice; the lower 

the BIC, the better fit the model is to the data (see methods). In our analysis of sub-

phenotype data, there was not much difference between models A, C, D and E in Table 2 in 

terms of the BIC, which represents the relative belief in a model given the data. However, 

model B, which began the forward stepwise regression with threonine at position 77 in HLA-

DRB1, had the lowest BIC. This model does have one more term than the other four models. 

Our extended model search (see methods) did not result in a model with a lower BIC.

Haplotype analysis—There are two main extended MHC haplotypes associated with 

SLE in northern Europeans that contain the class II alleles HLA-DRB1*03:01 and HLA-

DRB1*15:01.18 These extended haplotypes are comprised of the following HLA alleles: 

HLA-A*03:01—HLA-B*07:02—HLA-C*07:02—HLA-DRB1*15:01—HLA-D QA1*01:02

—HLA-DQB1*06:02 and HLA-A*01:01—HLA-B*08:01—HLA-C*07:01—HLA-
DRB1*03:01—HLA-DQA1*05:01—HLA-DQB1*02:01. We tested for association of these 

extended haplotypes with anti-Ro antibody status with the hypothesis that the association 

signals at HLA-DRB1*03:01 and HLA-DRB1*15:01 are independent of these haplotypes. 

We observed significant effects for both haplotypes (HLA-DRB1*03:01: P =1.02 × 10−12, 

OR =2.17; HLA-DRB1*15:01: P =0.02, OR =1.71). We found evidence that HLA-

DRB1*03:01 is associated independently of the HLA-B*08:01-DRB1*03:01 haplotypic 

background (P = 3.05 × 10−07), whereas we fail to find evidence that HLA-DRB1*15:01 (P 

= 0.17) is independent of the HLA-B*07:02-DRB1*15:01 haplotype.

Anti-La antibody subphenotype

Stepwise conditional analysis—The most strongly associated marker with the anti-La 

autoantibody sub-phenotype was the SNP rs2894254, in the class III region (P =3.40 × 

10−30; OR = 3.38, 95% CI =2.74–4.16). This SNP is in LD (R2 =0.84, D′ = 0.99) with HLA-

DRB1*03:01. We do not find further associations when conditioning on this SNP as a 

covariate. However, if we condition on HLA-DRB1*03:01, we find a further association 

with rs9268832, located between HLA-DRA and HLA-DRB5 in class II (P =6.53 × 10−06; 

OR =1.64; 95% CI =1.32–2.04). Results from these two models can be seen in Table 3. The 

HLA-DRB1 AA threonine at position 77 was observed to have a protective effect, consistent 

with the anti-Ro analyses. However, this AA was not the most associated marker (P =2.4 × 

10−28). Conditioning on Thr77, we find an additional association with rs2227139, located in 

HLA-DRA in class II (P =6.47 × 10−06; OR = 1.64; 95% CI =1.32–2.04). The SNP, 

rs2227139, is in LD with rs9268832 (R2 = 0.91, D′ =0.96).
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Model choice using the BIC—As with the analysis of anti-Ro, we used the BIC as an 

aid to model comparison. The model including AA variation has the lowest BIC (model C in 

Table 3) but is only slightly lower than the model conditioning on HLA-DRB1*03:01. 

Therefore, we cannot choose between the AA and the HLA allele as the best explanation for 

the data; however, conditional on either of these we find an independent association in class 

II. Both of these models have a lower BIC than model A, which only has the single most 

associated SNP (rs2894254). These data therefore favour two independent associations in 

class II, one of which is most likely HLA-DRB1*03:01 or the HLA-DRB1 AA threonine at 

position 77. Our extended model search (see methods) returned the same models as in Table 

3.

Haplotype analysis—We observed significant effects for the HLA-DRB1*03:01 

haplotype but not the HLA-DRB1*15:01 haplotype with anti-La antibody status (HLA-

DRB1*03:01: P =1.19 × 10 −16, OR =3.12; HLA-DRB1*15:01: P =0.63). We found 

evidence that HLA-DRB1*03:01 is associated independently of the HLA-B*08:01-

DRB1*03:01 haplotype (P = 6.42 × 10 −13).

Independence of anti-Ro and anti-La autoantibody associations with HLA-DRB1*03:01

Thus far, we have observed strong evidence of association between HLA-DRB1*03:01 and 

both anti-Ro and anti-La autoanti-body subsets. As these two phenotypes are correlated (R2 

=0.27), we performed conditional analyses to determine whether the associations for each 

sub-phenotype were independent of each other. We performed logistic regression analysis 

with each sub-phenotype as an outcome and the other sub-phenotype as a covariate. Table 4 

displays the sample sizes and HLA-DRB1*03:01 frequencies for these case only analyses.

When conditioning on anti-La as a covariate, HLA-DRB1*03:01 continues to be strongly 

associated with anti-Ro antibody status (P = 1.23 × 10 −07, OR =1.60 95% CI =1.02–2.54). 

Also, when conditioning on anti-Ro, HLA-DRB1*03:01 continues to be strongly associated 

with anti-La antibody status (P =1.66 × 10 −12, OR =2.57 95% CI =1.98–3.34). To assess 

the robustness of these conditional regression results, we examined the anti-Ro association 

in only anti-La-negative cases and found that HLA-DRB1*03:01 was still strongly 

associated with anti-Ro (P =6.79 × 10 −07, OR =1.58 95% CI =1.32–1.89). In anti-La 

antibody-positive SLE cases, HLA-DRB1*03:01 is weakly associated with anti-Ro (P = 

0.055, OR = 2.37 95% CI =0.98–5.74). We performed the same analyses for the anti-La 

antibody subset, stratifying on the anti-Ro phenotype. In anti-Ro-positive SLE cases, HLA-

DRB1*03:01 is strongly associated with anti-La (P =6.18 × 10 −12, OR =2.81 95% CI 

=2.09–3.77). Among anti-Ro-negative SLE cases, HLA-DRB1*03:01 is weakly associated 

with anti-La (P =0.06, OR =1.96 95% CI =0.97–3.73). Therefore, we conclude that the 

association signal for HLA-DRB1*03:01 with anti-La is not due to this sub-phenotype’s 

correlation with anti-Ro, and vice-versa.

The HLA-DRB1*03:01 association with SLE susceptibility is independent of the association 
with anti-Ro and anti-La antibody subsets

We have provided strong evidence for the association between HLA-DRB1*03:01 and both 

anti-Ro and anti-La antibody subsets. This HLA-DRB1 allele has been consistently and 
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strongly associated with SLE susceptibility in European populations,16 and this is confirmed 

in our current data (P =3.38 × 10−49; OR =1.86 95% CI =1.71–2.02). However, the 

association of HLA-DRB1*03:01 with anti-Ro/anti-La antibody subsets and SLE 

susceptibility may not be independent—the DRB1*03:01 association with SLE may be 

purely secondary to its association with anti-Ro and anti-La antibody status.

If the association between HLA-DRB1*03:01 and SLE status is not driven entirely by sub-

phenotype then one could hypothesize a three-level model of disease type (unaffected; sub-

phenotype-negative case; sub-phenotype-positive case) based on increasing HLA-

DRB1*03:01 frequency. Figure 1 plots the change in HLA-DRB1*03:01 dosage over levels 

of disease; the average dosage appears to increase over all three levels. Therefore, we 

examined (see methods) the hypothesis that the HLA-DRB1*03:01 association with anti-Ro 

and anti-La antibody sub-phenotypes explains the association of DRB1*03:01 with SLE in 

general. We also tested whether the risk was additive over the three levels of disease.

Anti-Ro antibody sub-phenotype

We found a significant difference in HLA-DRB1*03:01 dosage between healthy controls and 

anti-Ro antibody negative cases (P = 1.97 × 10 −14). The estimated change in dosage was 

0.1 (95% CI =0.08–0.13), equivalent to a change in allele frequency of 0.05 (95% CI =0.04–

0.06).

We also found a significant increase in dosage between anti-Ro-negative cases and anti-Ro 

positive cases (P =2.97 × 10−33). The estimated change in dosage (see Table 5) is 0.27 (95% 

CI =0.22–0.31), equivalent to a change in frequency of 0.13 (95% CI = 0.11–0.16).

We found evidence against the hypothesis that the increase in dosage is additive over the 

three disease levels (P =0.008). Our final test against the additive model implies that the 

difference in HLA-DRB1*03:01 dosage between anti-Ro(−)/anti-Ro( +) status (increase of 

0.27) in the cases is more than double that of the difference between cases and healthy 

controls (increase of 0.10).

Anti-La antibody subphenotype

We found a significant difference in HLA-DRB1*03:01 dosage between healthy controls and 

anti-La-negative cases (P =3.57 × 10 −25). The estimated change (see Table 5) in dosage is 

0.13 (95% CI = 0.11–0.15), equivalent to a change in frequency of 0.06 (95% CI =0.05–

0.08).

We also found a significant increase in dosage between anti-La-negative and anti-La-

positive cases (P = 2.45 × 10 −39). The estimated change in dosage (see Table 5) is 0.41 

(95% CI =0.35–0.47), equivalent to a change in frequency of 0.21 (95% CI =0.18–0.24).

We found evidence against the hypothesis that the increase in dosage is additive over the 

three disease levels (P =1.5 × 10 −04). Table 5 displays the effect sizes and P-values for this 

analysis. Our final test against the additive model implies that the difference in HLA-

DRB1*03:01 dosage between anti-La( −)/anti-La( + ) status (increase of 0.41) in the cases is 

more than triple that of the difference between cases and healthy controls (increase of 0.13).
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Double positive and double negative anti-Ro and anti-La antibody sub-phenotypes

Our study was large enough to determine whether the frequency of HLA-DRB1*03:01 

differs between SLE cases who are double negative for anti-Ro and anti-La antibodies (N 

=1781) and healthy controls (N =9782). It is known that these antibodies are present in 

approximately 2% of the healthy population; however, we do not have this phenotype data 

for the controls. The following results therefore assume that all controls are negative for 

antinuclear antibodies. We found a significant association of HLA-DRB1*03:01 with the 

double negative SLE cases/healthy controls status (OR =1.49, 95% CI =1.35–1.65; P = 2.23 

× 10 −14). Further analysis demonstrated a stronger association with the double positive (n 

=259)/double negative SLE case status (OR =3.71, 95% CI = 2.97–4.64; P =2.00 × 10 −16). 

To test whether these two odds ratios differ, we ran the same analysis for a three-stage risk 

model as we did for anti-Ro and anti-La antibody subsets separately (see above, Table 5 

results). We found very strong evidence against the hypothesis that the increase in dosage is 

additive over the three disease levels (P = 6.65 × 10 −06). The non-additive effect leads to a 

very large odds ratio between double positive SLE cases and healthy controls, which we 

found to be 5.27 (95% CI = 4.31–6.44; P =3.14 × 10 −59; Figure 1).

DISCUSSION

Our results confirm, in the largest SLE sub-phenotype genetic association study to date, that 

the often replicated genetic association at HLA-DRB1*03:01 does not just influence SLE 

susceptibility but is also associated with anti-Ro and anti-La autoantibody production. For 

the first time, we have shown that HLA-DRB1*03:01 is associated with SLE per se, 

independent of anti-Ro and anti-La antibody subsets. These data implicate HLA-

DRB1*03:01 and variants in LD with it in the predisposition to anti-Ro and anti-La 

autoantibody production as well as processes outside of this manifestation.

We do not find conclusive evidence that variant HLA AAs explain the majority of the MHC 

association signal in anti-Ro and anti-La autoantibody subsets in SLE. This is largely due to 

the confounding effects of extended LD displayed by the associated DRB1*03:01 and to a 

lesser extent, the DRB1*15:01 haplotypes in our study cohorts. These results contrast with 

those of a recent study in anti-CCP-positive rheumatoid arthritis, where five HLA AA 

variants were suggested to largely explain the MHC association with disease status.19 In this 

case, the disease-associated variants generally reside on a diversity of haplotypes. Studies in 

other autoimmune/inflammatory diseases have either not shown robust association signals 

with variant HLA AA data or like the present study have shown association with AAs in 

strong LD with previously associated HLA alleles. It may be that HLA amino association 

signals are more complex than the single-variant testing method we and others have used.

Limitations of the present study include the heterogeneity in autoantibody testing procedures 

and sub-phenotype data collection between the four studies. As a result, data were tabulated 

and analysed in an essentially binary format (that is, individual cases were classified as 

positive, negative or missing for each trait), to allow meta-analysis. However, in so doing, a 

degree of noise is inevitable, which would reduce our power to detect true association 

signals particularly in the less common sub-phenotypes. We were also limited by the 

imputation required to analyse a consistent set of SNPs across studies and the reliance on 
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HLA imputation. In addition, we are constrained in our conclusions on differences in results 

for anti-Ro and anti-La antibody subsets given the much smaller sample size available for 

the anti-La phenotype. Thus, we have confined some of our analyses to the most robust 

association; that of HLA-DRB1*03:01 with both anti-Ro and anti-La antibody sub-

phenotypes. We must also allow for the possibility that associations with HLA-DRB1*03:01 

could exist with other SLE subsets that overlap with anti-Ro/La, but have not been detected 

in our study. This highlights the need for extension of this work to other cohorts with sub-

phenotype data in order to increase sample size and power across as wide a range of 

phenotypes as possible.

In both anti-Ro and anti-La sub-phenotypes, we find evidence of secondary independent 

associations in the class II region of the MHC after conditioning on HLA-DRB1*03:01, and 

we find additional signals in class II and class III for anti-Ro. We have shown that the 

association of HLA-DRB1*03:01 with anti-Ro antibody status is independent of the 

association with anti-La and vice-versa. We have also shown that the association between 

SLE case/healthy control and HLA-DRB1*03:01 is not purely due to the association with 

anti-Ro and anti-La antibody sub-phenotypes. This implies a three-level model of risk for 

increasing dosage of HLA-DRB1*03:01, where the frequency of this allele is higher in anti-

Ro-negative cases than in healthy controls and higher still in anti-Ro-positive cases than 

anti-Ro-negative cases. The same is true for anti-La. In fact, we find very strong evidence 

that the HLA-DRB1*03:01 risk of anti-Ro/anti-La double positive within SLE patients is 

much greater than the risk of anti-Ro/anti-La double negative (other lupus phenotypes 

without these anti-bodies present) in the general population. We can conclude that the 

association of HLA-DRB1*03:01 with SLE is driven to a large extent but not entirely by 

anti-Ro and anti-La auto-antibody sub-phenotypes.

Although we do find evidence of an independent class III association with anti-Ro, there is 

some uncertainty. We find a significant association with the class III SNP rs3130781 

conditional on the AA Thr77-DRB1. However, when conditioning on the markers in model 

C in Table 2 (HLA-DRB1*03:01 +HLA-DRB1*15:01 + rs9275582; BIC =2829.8) in a 

forward stepwise regression, the association with rs3130781 is not significant (P = 4.2 × 

10 −05). This is also the case for model D in Table 2 (HLA-DRB1*03:01 + HLA-

DRB1*15:01 +HLA-DQB*03:02; BIC =2829.6). So conditional on HLA-DRB1*03:01 and 

HLA-DRB1*15:01, we find an independent association in class II but not class III. However, 

we did consider conditioning on HLA-DRB1*03:01 alone, where a stepwise regression 

returned a class II SNP (rs9271731; R2 with HLA-DRB1*15:01 =0.72) and the class III SNP 

rs3130781. This model has a BIC =2929.00. Hence, there is uncertainty as to whether there 

is an independent class III effect when conditioning on HLA-DRB1*03:01; all three models 

fit the data equally well (not much difference in the BIC). Nevertheless, the best model in 

Table 2 does suggest that there is an independent class III effect conditional on the class II 

AA Thr77-DRB1. This model has a much lower BIC than any others. There is some 

evidence, therefore, of a class III association with anti-Ro; however, we believe that more 

data, and ideally across diverse populations (to help remove effects due to LD), are required 

to be more definitive about this.
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The results of the present study while enlightening are confounded by the strong and 

extended LD present on the principally associated HLA-DRB1*03:01 and HLA-DRB1*15:01 

haplotypes. Complementary studies in accurately phenotyped southern European and non-

European SLE cohorts, which show haplotypic diversity at the MHC, will allow refinement 

of the sub-phenotype association signals found in the predominantly northern European 

populations studied thus far.20 These efforts may still yield association intervals that harbour 

several genes/variants. Therefore, future work will inevitably require re-sequencing, 

transcriptomic and epigenetic studies in order to tease out these complex association signals.

MATERIALS AND METHODS

Study design

This study is a meta-analysis of four studies taken from work described in a previous 

paper.16 We only included four of the six previous studies in this work as sub-phenotype 

data were not available from the other two studies (named ‘Affy500K’ and ‘Affy100K’ in 

the previous paper). We refer to the previous meta-analysis of SLE case–control data as the 

‘parent study’ in this work. The number of SLE cases and controls in this paper for the four 

included studies are the same as in the parent study, and quality control (QC) procedures for 

these data are described in full in the previous paper, including tests for relatedness and 

adjustments for population structure. We include some QC descriptions below for clarity in 

this paper.

QC and imputation

SNPs—We only analysed SNPs that passed QC in our previous paper,16 which utilized 

these data: 90% genotyping for all subjects and SNPs, minor allele frequency >0.01 and 

Hardy–Weinberg equilibrium (false discovery rate of 0.05).

HLA imputation—We imputed HLA genotypes using HLA*IMP V2.21 Only genotyped 

SNPs in each case collection were used for this imputation. We used posterior probabilities 

of HLA genotypes, rather than most likely genotypes, in order to allow for uncertainty in 

imputation. From these probabilities, we calculated dosages for each allele (expected 

number of alleles 0<x<2). We had HLA-DRB1 typed data in two studies: the ‘Illumina 

Combined MHC panel’ study (N =1608) and the ‘Illumina Custom panel’ study (N = 605). 

This allowed for assessment of accuracy, which for the two main reported positive 

associations in this paper were as follows: for HLA-DRB1*03:01, we achieved sensitivity of 

0.992/0.999 and specificity of 0.995/0.993 for the Illumina Combined MHC panel and 

Illumina Custom panel’ respectively. For HLA-DRB1*15:01, we achieved sensitivity of 

0.980/0.992 and specificity of 0.996/0.997.

AA translation

AA sequences for each HLA allele were extracted from the European Bioinformatics 

Institute HLA database (http://www.ebi.ac.uk/ipd/imgt/hla/). HLA allele dosages were 

converted to AA dosages at each position; the dosage for a particular amino acid ‘A’ at 

position ‘p’ would be the sum of HLA alleles’ dosage that coded for amino acid ‘A’ at 
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position ‘p’. The total dosage for each position is therefore equal to 2 and this total is split 

between each possible AA at the position.

We had data at 338 AA positions that had variable AAs (HLA-A =67, HLA-B = 75, HLA-C 

=71, HLA-DPB1 = 21, HLA-DQA1 = 41, HLA-DQB1 =61, HLA-DRB1 = 52). Owing to 

multiple possible AAs at each position, we actually had 1255 possible position/AA variants 

in total.

Adjustment for population structure—We analysed the data with the statistical 

computing language R22 using logistic regression. All analyses were adjusted for ancestry 

utilizing the first principal component (PC) or percentage of northern European ancestry, as 

previously described16 and included a covariate for project. As the PCs were computed 

specifically for each case collection, we also included interaction terms between projects and 

ancestry to allow for different effect sizes in the adjustment for population structure.

Single-marker analysis of candidate sub-phenotypes and analysis of SLE as a 
simple disease outcome—We examined the 11 ACR criteria17 and presence of 7 SLE-

related auto-antibodies (anti-Ro/SSA, anti-La/SSB, anti-double-stranded DNA, anti-RNP, 

anti-Sm and anticardiolipin IgG and IgM) as candidate sub-phenotypes for detailed analysis. 

To determine which sub-phenotypes were most strongly influenced by genetic variation in 

the MHC, we tested each sub-phenotype for association with all variants (SNPs, HLA alleles 

and HLA AAs) in single-variant association tests using logistic regression adjusted for 

population substructure and case collection. We also tested the association between markers 

and SLE as a simple disease outcome for the four studies considered here. Results for 

association with HLA-DRB1*03:01 are discussed in the beginning of the section titled ‘The 

HLA-DRB1*03:01 association with SLE susceptibility is independent of the association with 

anti-Ro and anti-La antibody subsets’.

Conditional association analysis of anti-Ro and anti-La—Owing to numerous 

single-marker associations within the extended LD of the MHC, we used conditional 

analyses to narrow these associations to those with the best evidence for strength and 

independence. All analyses utilized logistic regression with ancestry and project covariates 

(see above) and were halted when the evidence for association with a new term was P>3 × 

10 −05. We performed classic forward stepwise regression, conditioning on the top variant to 

find the second variant, and so on.

A simple forward stepwise approach can lead to over-fitting (selecting many correlated 

markers) and the results may be misleading because of selected markers potentially tagging 

two or more independently associated markers.16 Therefore, we also performed a model 

search using the BIC16 as the inclusion metric in a stepwise regression using the R22 ‘step()’ 

function, first starting with no prior model (other than covariates above) and also starting 

from HLA-DRB1*03:01 and HLA-DRB1*15:01 as initial model terms. Although BIC 

optimization was used to select model terms, we terminated the selection when it would 

result in a term with P>3 × 10−5. The BIC23,24 is a penalized likelihood model choice 

criterion similar to the Akaike Information Criterion24 except there is a stronger penalty for 

additional model parameters that increases with sample size. The BIC is therefore more 
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conservative and favours smaller models than the Akaike Information Criterion. As with the 

Akaike Information Criterion, the smaller the BIC the better the model is judged to fit the 

data.

Haplotype analysis of anti-Ro and anti-La—Given the high degree of correlation 

between the associated variants identified from the model searches described above, we 

conducted a haplotype analysis of these variants using PLINK25 using the best-guess 

genotypes estimated from HLA*IMP2. We used PLINK to phase haplotypes and perform 

multivariate logistic regression where terms are haplotypes rather than individual variants, 

optionally controlling for individual variants or haplotypes.

Multiple testing—In the MHC, a Bonferroni adjustment for multiple testing is 

inappropriate because of the extensive LD and hence correlated variants. In order to 

determine the number of independent variants, we performed a PC analysis of all SNPs. In 

our data, we found that 374 PCs had eigenvalues >1 and these PCs explained 96% of the 

variance. Thus, we used a multiple-testing threshold of P<0.01/374 = 3 × 10 −5.

Testing for independence between the SLE association and sub-phenotype 
association with HLA-DRB1*03:01—We fitted a linear regression model with dosage 

for HLA-DRB1*03:01 as the outcome and both case/control status and sub-phenotype status 

as explanatory variables. We therefore tested each effect conditional on the other. A 

significant association for case/control status conditional on sub-phenotype implies that we 

reject the hypothesis that sub-phenotype is solely driving the case/control association. This 

is equivalent to setting the three-level status as a factor in the regression in terms of model 

fit. But rather than obtaining an estimate of dosage change between healthy controls and 

sub-phenotype positive as we would in a three-level factor (where the baseline is healthy 

control), we get an estimate of change between sub-phenotype positive and sub-phenotype 

negative. In both models, we also get an estimate of change between healthy controls and 

sub-phenotype negative.

Furthermore, we tested the hypothesis that the increase in dosage is additive over the three 

disease levels (Healthy-Control Case sub-phenotype negative/Case sub-phenotype positive). 

This is achieved by fitting a model with an additive effect for dosage over the three 

phenotype levels. This additive model is nested within our model used to test independence 

of sub-phenotype association with SLE-case/healthy control, so we performed a likelihood 

ratio test. A rejection of this additive model, in favour of the three-level factor model 

(described in the previous paragraph), is evidence that the change in dosage over sub-

phenotype within cases is different than the change in dosage between healthy controls and 

SLE without the sub-phenotype.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
HLA-DRB1*03:01 dosage (average number of alleles observed) over levels of disease (a): 

(healthy controls/anti-Ro( −)/anti-Ro( +)); (b): (healthy controls/anti-La( −)/anti-La( +)); (c) 

(healthy controls/anti-Ro( −) AND anti-La( −)/anti-Ro( +) AND anti-La( +)/). Average 

dosage is represented by a square, whereas upper and lower 95% confidence intervals are 

represented by ‘ −’. Note that dosage ranges from 0 to 2 for each subject and so to convert to 

allele frequency you must divide by 2. All three plots have been truncated at 1.
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Table 1

Individual studies with number of genotyped SNPs, number of SLE cases and sample sizes for anti-Ro/La 

within cases

Study case collection N genotyped MHC SNPsa N casesb Sample sizes (+/−/missing)

Illumina HumanHap5506 2380 1123 Anti-Ro: 319/796/8
anti-La: 137/978/8

Illumina HumanHap3175 1522 398 Anti-Ro: 36/107/225
anti-La: 17/126/255

Illumina Combined MHC panel26 2360 917 Anti-Ro:158/454/305
anti-La:79/531/307

Illumina custom panel27 1230 632 Anti-Ro: 168/446/18
anti-La: 48/565/19

Abbreviations: MHC, major histocompatibility complex; SLE, systemic lupus erythematosus; SNP, single-nucleotide polymorphism. The last 
column denotes the number of SLE cases who were positive, negative or had missing data for each sub-phenotype.

a
Number of SNPs on the genotyping platform located on chromosome 6 between 26 000 and 34 000 kb.

b
See original paper16 for a description of SLE case recruitment.
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Table 4

Allele frequencies for HLA-DRB1*03:01 in case only association analysis of anti-Ro and anti-LA when 

conditioning on the status of each sub-phenotype

Status Anti-La( +), N Anti-La( −), N

Anti-Ro( +) 0.41 (259) 0.26 (418)

Anti-Ro( −) 0.28 (22) 0.18 (1781)

Frequencies for the HLA-DRB1*03:01 allele are shown with the sample sizes in brackets.
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Table 5

Multi-level model for HLA-DRB1*03:01 dosage over phenotype

Phenotype Effect (change in dosage) 95% CI P-value

(A) Results for anti-Ro

 Anti-Ro( −)/control 0.10 0.08–0.13 1.97 × 10 −14

 Anti-Ro( +)/anti-Ro(−) 0.27 0.22–0.31 2.97 × 10 −33

(B) Results for anti-La

 Anti-La( −)/control 0.13 0.11–0.15 3.57 × 10 −25

 Anti-La( +)/anti-La( −) 0.41 0.35–0.47 2.45 × 10 −39

Abbreviation: CI, confidence interval. Effect is the change in dosage for HLA-DRB1*03:01 between positive and negative for specified phenotype. 
(A) Results for healthy control/anti-Ro-negative/anti-Ro-positive. (B) Results healthy control/anti-La-negative/anti-La-positive.
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